

Complex Build Workflows and Jenkins

Andrew Bayer, Cloudera Inc.

Introduction: Who Am I?

● Andrew Bayer
● Cloudera Kitchen team (QA, build,

packaging, etc)
● Build architect
● Board member and committer for Jenkins
● Committer on Apache Bigtop, Apache

Flume, Apache Sqoop, Apache Whirr,
jclouds

Not all software builds can be contained in a
single Jenkins job.

Nor should they!

If your build process needs to generate artifacts
for multiple platforms, aggregate the output

from other builds, etc...

You will probably end up with multiple Jenkins
jobs.

Jenkins provides an amazing array of plugins
and tools for tying those multiple jobs together

into a coherent workflow

An Example

● Cloudera's CDH build
– RPM/Debian packages for an array of

Linux distributions/platforms.

– Binary tarballs and source RPM/Debian
packages.

– Deployed Maven artifacts.

– All that for 10+ component projects.

– RPM/Debian package repositories for all of
the above.

How We Used To Build

● One monolithic Jenkins job, calling a
python script.

– Check out all 10+ component's git repos
and a parent repo with common
makefiles, etc, using a tool similar to
Android's repo.

– Build source packages and deploy Maven
artifacts.

– Push source packages to S3.

How We Used To Build, continued

– Launch an EC2 instance for each platform

– Build native packages from the source
packages on each EC2 instance.

– Push the native packages to S3

– Generate package repositories from the
packages on S3

● Reminder: all of that is done through a
single Python script.

Why We Changed

● Not possible to poll for changes, since we
weren't using the Jenkins git plugin.

● No meaningful record of source code
changes from build to build, for the same
reason.

● No way to restart the build partway through
– it's all or nothing.

● Can't build just one component or one
platform – again, all or nothing.

Why We Changed, continued

● No visibility into build progress while on
EC2 phase.

● Many, many distinct moving parts, glued
together by confusing custom scripts.

● So many, many places things could go
wrong, and so hard to fix when they do!

Our New Build Process

● Each component has a separate Jenkins
job

– Git repos cloned/checked out using
Jenkins Multi-SCM plugin, not custom
scripts

– Component job build source packages,
deploys Maven artifacts

– Copies source packages to a binary
staging area, and then calls generic
native packaging builds for all needed
platforms

Our New Build Process, continued

● Generic native packaging jobs
– One for each platform

– Parameters specify which component to
build, and where to find the source
packages

– No need for component or even release
specific behavior in native packaging jobs
– just environmental setup and
rpmbuild/debuild!

– Built RPM/Debian packagings pushed to
binary staging area.

Our New Build Process, continued
● After all generic native packaging jobs for a

component finish, current package
repositories updated with newly built
packages

● Current package repositories always have
the latest-and-greatest packages for all
components in a release.

Our New Build Process, continued

● Full build of all components runs weekly
– Builds components in dependency order,

parallelizing when possible

– Normal package repository update skipped

– Instead, at end of full build, when all
components have completed, new
repositories are created

How The New Process Helps

● Individual components can be built on their
own

● Component builds poll for changes, giving
us automatic builds whenever code
changes

● Full builds can be restarted from a failure
point easily

How The New Process Helps,
continued

● Separate Jenkins jobs for each step in the
process make it much easier to see what's
going on, what went wrong, where, etc.

● Parallelized full builds mean build time
drops by ~25%, with more room for
improvement to come.

How The New Process Helps,
continued

● Widely-used Jenkins plugins used instead
of custom scripts whenever possible,
providing significant improvement in
reliability.

● Cheaper than building on EC2!

How We Did It:

...Plugins, Plugins, Plugins!

Plugins We're Using

● Parameterized Trigger Plugin
– Triggers downstream builds with

parameters.

– Allows us to have a single generic
packaging job per platform, rather than
one for each component/platform combo.

Plugins We're Using

● Parameterized Trigger Plugin, continued
– Run downstream builds as a blocking build

step.

– Can run multiple downstream builds at the
same time, with the same parameters.

– Lets us have component and full build jobs
that run downstream builds, wait until
they complete, and then do further
actions.

Plugins We're Using

● Conditional Build Step Plugin
– Invoke different sets of build steps

depending on conditions

– Possible conditions include checks against
parameters, time/day of week, and
anything else using the Token Macro
plugin's token functionality.

Plugins We're Using

● Conditional Build Step Plugin, cont.
– Makes builds themselves scriptable,

without having to use shell script build
steps for all logic.

– We use this to invoke our package
repository update script with the
Parameterized Trigger plugin, but only
when a component build is not part of a
full build.

Plugins We're Using

● jclouds plugin
– Like EC2 plugin, but for any cloud

API/provider supported by jclouds 1.5.

– Spin up slaves on the fly from existing
templates/images.

– Can also create multiple instances as part
of a build, tearing them down at end, for
use in cluster testing, etc.

Plugins We're Using

● jclouds plugin, cont.
– Saves us money and hassle by letting us

spin up package build slaves on our
internal cloud, rather than EC2.

– In-development node pooling feature will
allocate new slaves from a pool of
already-running fresh instances, dropping
provisioning time immensely.

Plugins We're Using

● Multi-SCM plugin
– Use multiple SCM plugins or multiple

instances of a single SCM plugin in an
individual Jenkins job.

– Full Jenkins SCM integration when using
multiple git repositories in a single build,
without needing to use something like git
submodules.

Plugins We're Using

● Description Setter plugin
– Sets the Jenkins build description based on

regex matching in the build log.

– Lets us mark what component was built in
a generic packaging build easily and
obviously.

Plugins We're Using

● Associated Files plugin
– Marks files and/or directories outside of

Jenkins archived artifacts as being
connected to a build.

– Records and displays staging area and
package repositories for our builds.

– With delete option enabled, associated
directories will get deleted when the build
gets deleted, simplifying cleanup.

Non-Jenkins-specific

● Not using S3 means we had to do our own
binary staging area

– Considered using S3 regardless, or using
something like MongoDB or HDFS for
storing files

– Opted for simple NFS – less overhead,
easier to access, etc

– Not using Jenkins archiving due to size of
artifacts – hundreds of megabytes,
hundreds of files

Future Considerations

● CloudBees Jenkins Enterprise Template
plugin

– Define a job in XML, with Jelly or Groovy
for variable replacement and logic

– Jobs based on the template automatically
inherit the template's job configuration,
changing when the template changes

– Would allow us to more easily have nearly
identical jobs for multiple components
and multiple releases with less
maintenance

Future Considerations, cont.

● All Changes plugin
– Aggregates change reports from

downstream builds, including those
launched via the Parameterized Trigger
plugin

– Would let us see all changes for a full build
of all components in one place

Future Considerations, cont.

● Github plugin
– Allows triggering builds via Github post-

receive hooks, rather than polling

– Kohsuke will tell you – that's better!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

